Recombinant Human EPHA8 Protein

Beta LifeScience SKU/CAT #: BL-1182SG

Recombinant Human EPHA8 Protein

Beta LifeScience SKU/CAT #: BL-1182SG
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag GST
Host Species Human
Accession NM_020526
Synonym EEK, HEK3, KIAA1459
Background EPHA8 is a member of the ephrin receptor subfamily of the protein-tyrosine kinase family in ahich EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats (1). EPHA8 receptors play a role in axonal pathfinding during development of the mammalian nervous system (2).
Description Recombinant human EPHA8 (565-end) was produced by baculovirus in Sf9 insect cells, fused with a GST tag at N-terminus. This protein is purified with our unique purification methods.
Source Sf9 insect cells
AA Sequence 565a.a.-end
Molecular Weight ~82 kDa
Purity For specific purity information on a given lot, see related COA.
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Formulation Recombinant protein is supplied in 50mM Tris-HCl, pH 7.5, 50mM NaCl, 10mM Glutathione, 0.25mM DTT, 0.1mM EDTA, 0.1mM PMSF and 25% glycerol.
Stability The recombinant protein is stable for up to 12 months at -70°C
Usage For Research Use Only
Storage Recombinant Human EPHA8 Protein should be stored should be stored at < -70°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

Target Details

Target Function Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. The GPI-anchored ephrin-A EFNA2, EFNA3, and EFNA5 are able to activate EPHA8 through phosphorylation. With EFNA5 may regulate integrin-mediated cell adhesion and migration on fibronectin substrate but also neurite outgrowth. During development of the nervous system plays also a role in axon guidance. Downstream effectors of the EPHA8 signaling pathway include FYN which promotes cell adhesion upon activation by EPHA8 and the MAP kinases in the stimulation of neurite outgrowth.
Subcellular Location Cell membrane; Single-pass type I membrane protein. Cell projection. Early endosome membrane.
Protein Families Protein kinase superfamily, Tyr protein kinase family, Ephrin receptor subfamily
Database References

Gene Functions References

  1. Q-PCR and IHC staining revealed that EphA8 was highly expressed in OTSCC tissues, especially in advanced stage OTSCC tissues. Kaplan-Meier curve showed that high EphA8 expression was significantly associated with poor prognosis. PMID: 30300334
  2. High EPHA8 expression is associated with epithelial ovarian cancer. PMID: 26989075
  3. Human miR-10a and EphA8 regulate epithelial-mesenchymal transition (EMT) to affect glioma cell migration and invasion. PMID: 25683004
  4. RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin. PMID: 22291991
  5. role in stimulated cell migration in presnce of p110 gamma PI-3 kinase PMID: 12681484
  6. EphA8 receptor is capable of inducing a sustained increase in MAPK activity, thereby promoting neurite outgrowth in neuronal cells PMID: 15782114

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

More from Enzymes
Recently viewed