Recombinant Xenopus Laevis Transforming Growth Factor Beta-1 (TGFB1) Protein (His)

Beta LifeScience SKU/CAT #: BLC-10673P
Greater than 90% as determined by SDS-PAGE.
Greater than 90% as determined by SDS-PAGE.

Recombinant Xenopus Laevis Transforming Growth Factor Beta-1 (TGFB1) Protein (His)

Beta LifeScience SKU/CAT #: BLC-10673P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Description Recombinant Xenopus Laevis Transforming Growth Factor Beta-1 (TGFB1) Protein (His) is produced by our Yeast expression system. This is a full length protein.
Purity Greater than 90% as determined by SDS-PAGE.
Uniprotkb P16176
Target Symbol TGFB1
Synonyms tgfb1; Transforming growth factor beta-1 proprotein; TGF-beta-5) [Cleaved into: Latency-associated peptide; LAP); Transforming growth factor beta-1; TGF-beta-1)]
Species Xenopus laevis (African clawed frog)
Expression System Yeast
Tag N-6His
Target Protein Sequence GVGQEYCFGNNGPNCCVKPLYINFRKDLGWKWIHEPKGYEANYCLGNCPYIWSMDTQYSKVLSLYNQNNPGASISPCCVPDVLEPLPIIYYVGRTAKVEQLSNMVVRSCNCS
Expression Range 271-382aa
Protein Length Full Length of Mature Protein
Mol. Weight 14.6kDa
Research Area Signal Transduction
Form Liquid or Lyophilized powder
Buffer Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Storage 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.

Target Details

Target Function Transforming growth factor beta-1 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains, which constitute the regulatory and active subunit of TGF-beta-1, respectively.; Required to maintain the Transforming growth factor beta-1 (TGF-beta-1) chain in a latent state during storage in extracellular matrix. Associates non-covalently with TGF-beta-1 and regulates its activation via interaction with 'milieu molecules', such as LTBP1, LRRC32/GARP and LRRC33/NRROS, that control activation of TGF-beta-1. Interaction with integrins (ITGAV:ITGB6 or ITGAV:ITGB8) results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-1.; Transforming growth factor beta-1: Multifunctional protein that regulates the growth and differentiation of various cell types and is involved in various processes, such as normal development, immune function, microglia function and responses to neurodegeneration. Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains remain non-covalently linked rendering TGF-beta-1 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with 'milieu molecules', such as ltbp1, lrrc32/garp and lrrc33/nrros that control activation of TGF-beta-1 and maintain it in a latent state during storage in extracellular milieus. TGF-beta-1 is released from LAP by integrins (ITGAV:ITGB6 or ITGAV:ITGB8): integrin-binding to LAP stabilizes an alternative conformation of the LAP bowtie tail and results in distortion of the LAP chain and subsequent release of the active TGF-beta-1. Once activated following release of LAP, TGF-beta-1 acts by binding to TGF-beta receptors (tgfbr1 and tgfbr2), which transduce signal. While expressed by many cells types, TGF-beta-1 only has a very localized range of action within cell environment thanks to fine regulation of its activation by Latency-associated peptide chain (LAP) and 'milieu molecules'. Plays an important role in bone remodeling: acts as a potent stimulator of osteoblastic bone formation. Can promote either T-helper 17 cells (Th17) or regulatory T-cells (Treg) lineage differentiation in a concentration-dependent manner. Can induce epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types.
Subcellular Location [Latency-associated peptide]: Secreted, extracellular space, extracellular matrix.; [Transforming growth factor beta-1]: Secreted.
Protein Families TGF-beta family
Database References

KEGG: xla:397778

UniGene: Xl.861

Gene Functions References

  1. These data indicate that TGF-beta signaling is crucial for the function of the transition zone, which in turn may affect the regulation of cilia length. PMID: 25959824
  2. R-Smads are the key components of TGFbeta beta signals in germ layer induction. SCP3 serves as a vegetally enriched, intrinsic factor to ensure a prepared status of Smads for their activation. PMID: 26013826
  3. the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-b-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo. PMID: 23435857
  4. TGF-beta signaling has a role in nuclear localization of transcription factor Smad4 PMID: 22689943
  5. sortilin negatively regulates TGF-beta signaling by diverting trafficking of precursor proteins to the lysosome during transit through the biosynthetic pathway PMID: 21521695

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

More from Cytokines
Recently viewed