Recombinant Human Bikunin Protein (His Tag)

Beta LifeScience SKU/CAT #: BLPSN-0406

Recombinant Human Bikunin Protein (His Tag)

Beta LifeScience SKU/CAT #: BLPSN-0406
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag His
Host Species Human
Accession NP_001624.1
Synonym A1M, EDC1, HCP, HI30, IATIL, ITI, ITIL, ITILC, UTI
Background The AMBP [A1M (alpha1-microglobulin)/bikunin precursor] gene encodes two plasma glycoproteins: A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine proteinase inhibitor family with prototypical Kunitz-type domain. Although previously believed to be constitutively expressed exclusively in liver, the present study demonstrates the induction of this gene by oxalate in porcine proximal tubular LLC-PK1 cells and rat kidney. In liver, the precursor protein is cleaved in the Golgi network by a furin-like enzyme to release constituent proteins, which undergo glycosylation before their export from the cell. In the renal tubular cells, A1M and bikunin co-precipitate, indicating lack of cleavage of the precursor protein. As the expression of the AMBP gene is regulated by A1M-specific cis elements and transcription factors, A1M protein was studied as a representative of AMBP gene expression in renal cells. The alpha(1)-microglobulin/bikunin precursor (AMBP) gene, and its two protein products were studied in mouse embryos of 8.5-15.5 days of embryonic development by in situ hybridization and immunohistochemistry. AMBP mRNA is strongly transcribed in liver parenchyma, pancreas, and intestine epithelium. Sites of weaker expression are the vessels of the umbilical cord, the developing vertebral bodies, and kidney. The alpha(1)-microglobulin and bikunin proteins are accordingly present in developing hepatocytes, pancreas, kidney, and gut. However, additional sites of protein distribution were found that do not correlate to mRNA localization: alpha(1)-microglobulin was found in myocytes and bikunin in cardiac muscle, nervous system microvasculature, and connective tissue
Description A DNA sequence encoding the alpha-1-microglobulin of human AMBP (NP_001624.1) (Met1-Val203) was expressed with a C-terminal His tag.
Source HEK293
Predicted N Terminal Gly 20
AA Sequence Met1-Val203
Molecular Weight The recombinant alpha-1-microglobulin of human AMBP comprises 195 a.a. and has a predicted molecular mass of 22.3 kDa. The apparent molecular mass of the protein is approximately 32.8 kDa in SDS-PAGE under reducing conditions.
Purity >95% as determined by SDS-PAGE
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Bioactivity Please contact us for detailed information
Formulation Lyophilized from sterile PBS, pH 7.4..
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed