Recombinant Human Glucokinase Protein

Beta LifeScience SKU/CAT #: BLPSN-2267

Recombinant Human Glucokinase Protein

Beta LifeScience SKU/CAT #: BLPSN-2267
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag N/A
Host Species Human
Accession NP_000153.1
Synonym FGQTL3, GK, GLK, HHF3, HK4, HKIV, HXKP, LGLK, MODY2
Background Glucokinase belongs to the bacterial glucokinase family. Hexokinases phosphorylate glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways. Alternative splicing of this gene results in three tissue-specific forms of glucokinase, one found in pancreatic islet beta cells and two found in liver. The protein localizes to the outer membrane of mitochondria. In contrast to other forms of hexokinase, this enzyme is not inhibited by its product glucose-6-phosphate but remains active while glucose is abundant. Mutations in this gene have been associated with non-insulin dependent diabetes mellitus (NIDDM), maturity onset diabetes of the young, type 2 (MODY2) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). It can Catalyzes the initial step in utilization of glucose by the beta-cell and liver at physiological glucose concentration. Glucokinase has a high Km for glucose, and so it is effective only when glucose is abundant. The role of GCK is to provide G6P for the synthesis of glycogen. Pancreatic glucokinase plays an important role in modulating insulin secretion. Hepatic glucokinase helps to facilitate the uptake and conversion of glucose by acting as an insulin-sensitive determinant of hepatic glucose usage. It has a pivotal role as glucose sensor of the pancreatic beta-cells. Glucokinase explains the capacity, hexose specificity, affinities, sigmoidicity, and anomeric preference of pancreatic islet glycolysis, and because stimulation of glucose metabolism is a prerequisite of glucose stimulation of insulin release, glucokinase also explains many characteristics of this beta-cell function. Glucokinase of the beta-cell is induced or activated by glucose in contrast to liver glucokinase, which is regulated by insulin. Tissue-specific regulation corresponds with observations that liver and pancreatic beta-cell glucokinase are structurally distinct. Glucokinase could play a glucose-sensor role in hepatocytes as well, and certain forms of diabetes mellitus might be due to glucokinase deficiencies in pancreatic beta-cells, hepatocytes, or both.
Description A DNA sequence encoding the human glucokinase isoform 1 (NP_000153.1) (Leu 2-Gln 465) was expressed, fused with two additional amino acids (Gly & Pro) at the N-terminus.
Source E.coli
Predicted N Terminal Gly
AA Sequence Leu 2-Gln 465
Molecular Weight The recombinant human GCK isoform 1 consists of 466 a.a. and predicts a molecular mass of 52.2 kDa as estimated in SDS-PAGE under reducing conditions.
Purity >95% as determined by SDS-PAGE
Endotoxin Please contact us for more information.
Formulation Supplied as sterile 20mM Tris, 10% Glycerol, pH 8.0.
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed