Recombinant Human Sodium Channel Protein Type 1 Subunit Alpha (SCN1A) Protein (His&Myc)

Beta LifeScience SKU/CAT #: BLC-06471P
Greater than 85% as determined by SDS-PAGE.
Greater than 85% as determined by SDS-PAGE.

Recombinant Human Sodium Channel Protein Type 1 Subunit Alpha (SCN1A) Protein (His&Myc)

Beta LifeScience SKU/CAT #: BLC-06471P
Regular price $1,404.00 Sale price $349.00Save $1,055
/
Size

Submit an inquiry or email sales for a custom bulk quote. Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Description Recombinant Human Sodium Channel Protein Type 1 Subunit Alpha (SCN1A) Protein (His&Myc) is produced by our Baculovirus expression system. This is a protein fragment.
Purity Greater than 85% as determined by SDS-PAGE.
Uniprotkb P35498
Target Symbol SCN1A
Species Homo sapiens (Human)
Expression System Baculovirus
Tag N-10His&C-Myc
Target Protein Sequence MEQTVLVPPGPDSFNFFTRESLAAIERRIAEEKAKNPKPDKKDDDENGPKPNSDLEAGKNLPFIYGDIPPEMVSEPLEDLDPYYINKKTFIVLNKGKAIFRFSATSALYILTPFNPLRKIAIKILVHS
Expression Range 1-128aa
Protein Length Partial
Mol. Weight 18.3 kDa
Research Area Others
Form Liquid or Lyophilized powder
Buffer Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Storage 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.

Target Details

Target Function Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain: activation in somatosensory neurons induces pain without neurogenic inflammation and produces hypersensitivity to mechanical, but not thermal stimuli.
Subcellular Location Cell membrane; Multi-pass membrane protein.
Protein Families Sodium channel (TC 1.A.1.10) family, Nav1.1/SCN1A subfamily
Database References
Associated Diseases Generalized epilepsy with febrile seizures plus 2 (GEFS+2); Epileptic encephalopathy, early infantile, 6 (EIEE6); Intractable childhood epilepsy with generalized tonic-clonic seizures (ICEGTC); Migraine, familial hemiplegic, 3 (FHM3); Febrile seizures, familial, 3A (FEB3A)

Gene Functions References

  1. Our cases represent a novel association between SCN1A and sudden infant death syndrome (SIDS), extending the SCN1A spectrum from epilepsy to SIDS. PMID: 29601086
  2. The effect of Ca(2+), domain-specificity, and CaMKII on CaM binding to NaV1.1 has been reported. PMID: 30142967
  3. This first genetic study of Dravet syndrome in Africa confirms that de novo SCN1A variants underlie disease in the majority of South African patients. PMID: 30321769
  4. these data suggest that MDH2, functioning as an RNA-binding protein, is involved in the posttranscriptional downregulation of SCN1A expression under seizure condition. PMID: 28433711
  5. Postzygotic mutation is a common phenomenon in SCN1A-related epilepsies. Participants with mosaicism have on average milder phenotypes, suggesting that mosaicism can be a major modifier of SCN1A-related diseases. PMID: 29460957
  6. SCN1A and SCN2A mutations and clinical/EEG features in Chinese patients from epilepsy or severe seizures PMID: 29649454
  7. rs7668282 (UGT2B7, T>C) was more prevalent in sodium valproate (VPA)-resistant patients than drug-responsive patients. rs2242480 (CYP3A4, C>T) and rs10188577 (SCN1A, T>C) were more prevalent in drug-responsive patients compared to drug-resistant patients. In children with generalized seizures on VPA therapy, polymorphisms of UGT2B7, CYP3A4, and SCN1A genes were associated with seizure reduction. PMID: 29679912
  8. Meta-analysis indicates that the A-allele of SCN1A rs2298771 polymorphism, especially AA genotype, may play an important role in responsiveness to sodium channel blocking antiepileptic drugs, while SCN1A rs3812718 polymorphism is not associated. PMID: 29582177
  9. Study established induced pluripotent stem cells (iPSC)from two Dravet syndrome patients with different mutations in SCN1A and subsequently differentiated them into forebrain GABAergic neurons. Unique genetic alterations of SCN1A differentially impacted electrophysiological impairment of the neurons, and the impairment's extent corresponded with the symptomatic severity of the donor from which the iPSCs were derived. PMID: 29295803
  10. miR155 may be associated with the risk of seizure and SCN1A may be a target gene of miR155. PMID: 29115566
  11. we report a Chinese familial hemiplegic migraine type 3 family with a novel mutation in the SCN1A gene. PMID: 27919014
  12. The polymorphic SCN1A c.3184A>G/p.Thr1067Ala G allele was associated with a lower risk of epilepsy and a higher remission rate in Slovenian children and adolescents with epilepsy. PMID: 28753467
  13. The evaluation of an SCN1A mutation. PMID: 27582020
  14. These findings provide insight into a pharmacophore on domain IV voltage sensor through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function. PMID: 28607094
  15. SCN1A rs3812718 polymorphism is a risk factor for GEFS+, and the population carrying T allele may have an increased risk of GEFS. PMID: 29429462
  16. study showed a significant association between rs6730344, rs6732655 and rs10167228 polymorphisms in the intronic regions of the SCN1A gene and refractory epilepsy, thus emerging as risk factors for drug resistance PMID: 29353705
  17. showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients PMID: 28664031
  18. These data provide evidence that Nav1.1 is indeed vulnerable to deltamethrin modification at lower concentrations than Nav1.6, and this effect is primarily mediated during the resting state. PMID: 28007400
  19. SCN1A deletions are more common than SCN1A duplications among Dravet syndrome patients, and the most common types are whole SCN1A deletions. PMID: 29188601
  20. Two novel missense mutations: p.G325A in the KDM6A gene responsible for Kabuki syndrome and p.G1877V in the SCN1A gene responsible for generalized epilepsy with febrile seizures plus were identified using the TruSight One sequencing panel. PMID: 28442529
  21. Similar to the known FHM3 mutations, this novel mutation predicts hyperexcitability of GABAergic inhibitory neurons. PMID: 26763045
  22. Study found in patients with focal seizures a seemingly uneven distribution of mutations within the SCN1A gene. Study identified valproic acid, stiripentol, and clobazam to be 3 medications that have the best effect on management of focal seizures due to an SCN1A mutation similar to what is seen in most cases of Dravet Syndrome. PMID: 27777328
  23. A novel SCN1A mutation was found in an 8-year-old boy with GEFS+. The father has the same mutation, but he only had childhood simple febrile seizures. PMID: 28262406
  24. In this study, we performed exome sequencing in six patients with SCN1A-negative Dravet syndrome to identify other genes related to this disorder..the data in this study identify GABRB3 as a candidate gene for Dravet syndrome PMID: 28544625
  25. Dravet syndrome-derived inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. PMID: 27458797
  26. The results further substantiate the contribution of SCN1A in response and therapy optimization with PHT monotherapy. PMID: 27245092
  27. Rather than a single common gene/variant modifying clinical outcome in SCN1A-related epilepsies, our results point to the cumulative effect of rare variants with little to no measurable phenotypic effect (i.e., typical genetic background) unless present in combination with a disease-causing truncation mutation in SCN1A. PMID: 28686619
  28. The frequency of pathogenic variants was 4.17% in the patients with refractory epilepsy and Dravet syndrome and 11.1% in DS patients. L1775P missense mutation was predicted to be damaging with a score of 100% by the PolyPhen-2 program. PMID: 28525652
  29. genetic variants in 3'UTR of SCN1A PMID: 27473590
  30. Among these transmissions were two likely disease-causing mutations: an SCN1A mutation transmitted to an SUDC proband and her sibling with Dravet syndrome, as well as an SLC6A1 mutation in a proband with epileptic encephalopathy. PMID: 26716362
  31. study presents a phenotype-genotype correlation for SCN1A; described a distinct SCN1A phenotype, early infantile SCN1A encephalopathy, which is readily distinguishable from the Dravet syndrome and genetic epilepsy with febrile seizures plus PMID: 28794249
  32. This study demonstrated that early-life prolonged FSs have a profound long-term impact on neuronal function and adult seizure phenotypes in a mouse model of human SCN1A dysfunction. PMID: 28373025
  33. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. PMID: 28518218
  34. this study showed that SCN1A testing be considered in all individuals with febrile seizures or Dravet syndrome , as well as in familial cases consistent with febrile seizures. PMID: 28084635
  35. This study found significant differences in the distribution of truncating and missense variants across the SCN1A sequence among healthy individuals, patients with Dravet syndrome. PMID: 28012175
  36. A heterozygous mutation h1u-1962 T > G was identified in a patient with partial epilepsy and febrile seizures, which was aggravated by oxcarbazepine. PMID: 26969601
  37. SCN1A mutations may alter axonal function, causing motor neuropathy/neuronopathy. This may contribute to gait disturbance and orthopedic misalignment, which is characteristic of patients with Dravet syndrome. PMID: 27316242
  38. The association study indicated that age at first seizure and frameshift mutations of SCN1A were associated with Dravet syndrome. PMID: 28202706
  39. Study reported the range of rare copy number variants found in SCN1A gene in a series of Welsh patients with childhood-onset epilepsy and intellectual disability and identified clearly or likely pathogenic CNVs in 8.8 % of the patients including 5 rare de novo deletions. PMID: 27113213
  40. Our findings suggest that SCN1A mutation leads to changes in the dopamine system that may contribute to the behavioral abnormalities in DS. PMID: 26841829
  41. This study demonstrated that a significant higher frequency of the AG genotype (p=0.001) and G allele (p=0.006) of SCN1A polymorphism in epileptic patients than in controls. PMID: 27498208
  42. Dravet syndrome is associated with mutations in the sodium channel alpha1 subunit gene (SCN1A) in 70-80% of individuals. PMID: 27264139
  43. The presence of SCN1A mutations and absence of mutations in ATP1A2 or CACNA1A suggest that the Polish patients represent FHM type 3. PMID: 26747084
  44. The findings of this study in scn1a mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID: 27066534
  45. Mutations in SCN1A, the gene that encodes the alpha subunit of voltage-gated sodium channel Nav1.1, can cause epilepsies. PMID: 26731440
  46. Retrospective study to survey the efficacy of antiepileptic drugs in Dravet syndrome with different SCN1A genotypes PMID: 26183863
  47. No causative variants were identified in any of non-DS epileptic patients in our cohort, suggesting a minor, but not irrelevant role for SCN1A in patients with other types of childhood epilepsy. PMID: 27045673
  48. Mutations in SCN1A and SCN2A are a predisposing factor of acute encephalopathy with biphasic seizures and late reduced diffusion PMID: 26311622
  49. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes. PMID: 26990884
  50. The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition PMID: 26555147

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed