Recombinant Mouse Artemin Protein (Fc Tag)

Beta LifeScience SKU/CAT #: BLPSN-0273

Recombinant Mouse Artemin Protein (Fc Tag)

Beta LifeScience SKU/CAT #: BLPSN-0273
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag Fc
Host Species Mouse
Accession NP_033841.1
Synonym neublastin
Background Artemin (ARTN) is a member of glial cell line-derived neurotrophic factor (GDNF) family of ligands, and its signaling is mediated via a multi-component receptor complex including the glycosylphosphatidylinositol-anchored GDNF family receptors a (GFRa1, GFRa3) and RET receptor tyrosine kinase. The major mechanism of- ARTN- action is via binding to a non-signaling co-receptor. The major function of- ARTN- is to drive the molecule to induce migration and axonal projection from sympathetic neurons. It also promotes the survival, proliferation and neurite outgrowth of sympathetic neurons in vitro.- ARTN- triggers oncogenicity and metastasis by the activation of the AKT signaling pathway. Recent studies have reported that the expression of- ARTN- in hepatocellular carcinoma is associated with increased tumor size, quick relapse and shorter survival. Furthermore,- ARTN- promotes drug resistance such as antiestrogens, doxorubicin, fulvestrant, paclitaxel, tamoxifen and trastuzumab. Moreover,- ARTN- also stimulates the radio-therapeutic resistance. Hypoxia has been reported to regulate the cancer stem cell (CSC) population yet the underlying mechanism is poorly characterized. Artemin (ARTN) is a member of the glial cell derived neurotrophic factor family of ligands, is a hypoxia-responsive factor and is essential for hypoxia-induced CSC expansion in hepatocellular carcinoma (HCC). Clinically, elevated expression of ARTN in HCC was associated with larger tumor size, faster relapse and shorter survival. In vitro, HCC cells with forced expression of ARTN exhibited reduced apoptosis, increased proliferation, epithelial-mesenchymal transition (EMT) and enhanced motility. Additionally, ARTN dramatically increased xenograft tumor size and metastasis in vivo. Moreover, ARTN also enhanced tumorsphere formation and the tumor initiating capacity of HCC cells, consequent to expansion of the CD133+ CSC population. ARTN transcription was directly activated by hypoxia-induced factor-1alpha (HIF-1alpha) and hypoxia induced ARTN promoted EMT and increased the CSC population via AKT signaling.
Description A DNA sequence encoding the mouse Artn (NP_033841.1) (Ala112-Gly224) was expressed with the Fc region of human IgG1 at the N-terminus.
Source HEK293
Predicted N Terminal Glu
AA Sequence Ala112-Gly224
Molecular Weight The recombinant mouse Artn consists 373 a.a. and predicts a molecular mass of 40.6 kDa.
Purity >90% as determined by SDS-PAGE.
Endotoxin < 1.0 EU per μg protein as determined by the LAL method.
Bioactivity Please contact us for detailed information
Formulation Lyophilized from sterile PBS, pH 7.4..
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed